# Mammoths, Meteors, and Supernovae



#### Richard B. Firestone Lawrence Berkeley National Laboratory

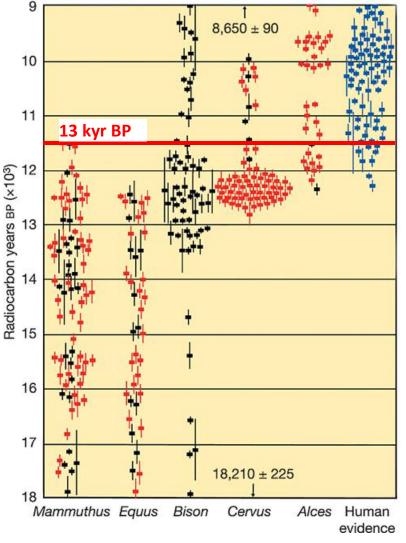


19th Meeting of the Nuclear Structure and Decay Data (NSDD) Network IAEA, Vienna, Austria, 4-8 April 2011

# **Summary of Events**

#### <u>12,900 years ago</u>

- At least 35 mammal genera including Mammoths disappeared.
- Paleo-Indians disappeared from the Americas
- The Laurentide ice sheet over Canada suddenly failed
- Temperatures dropped by 10°
- Massive high temperature forest fires occurred
- A black algal mat formed over the landscape
- 500,000 shallow elliptical Bays formed over the Eastern US
- Extraterrestial materials were deposited directly over fossils


#### <u>35,000 years ago</u>

- Micrometeorites became embedded in Mammoth tusks
- Mammoths, bison, bears, and horses disappeared in Beringia
- Sithylemenkat Lake meteor crater formed in Alaska

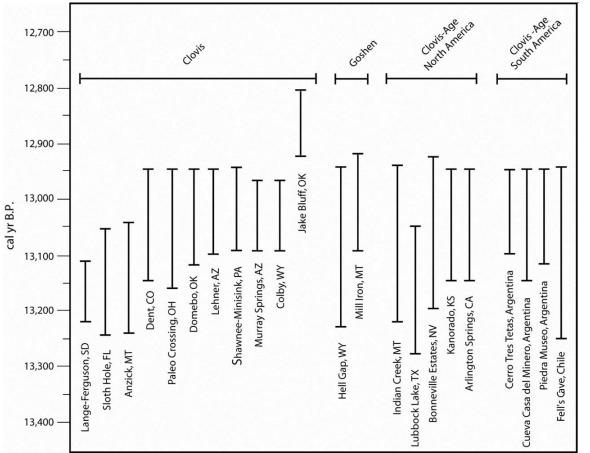
#### 44,000-37,000-32,000-22,000 years ago

- Supernovae exploded <250 parsecs from Earth
- 44,000 years ago megafauna extinctions occurred in Australia

# Some populations were decimated in North America



Grayson D, Meltzer D (2003) J Arch Sci 30:585–593.

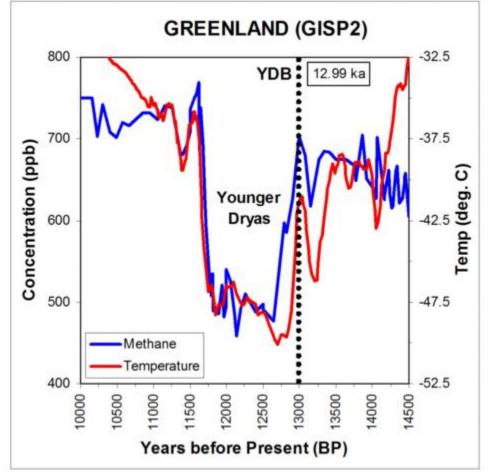

#### Extinct species

Tapirs Giant Armadillo (2 species) Peccary (2 species) Simpson's Glyptodont Camel Ground sloth (4 species) Llama (2 species) Short-face skunk Mountain deer Dhole (wild dog) Stag moose Bear (2 species) Pronghorns (3 species) Large cats (3 species) Saiga (antelope) Giant beaver Ox (2 species) Capybara (2 species) American Mastodon Aztlan rabbit Mammoths Horses

#### **Proposed explanations**

- Human predation how many Mammoth's can so few people eat? Who eats sloths?
  Climate change these species survived climate change for millions of years.
  Discose too many different species died of the species died of t
- Disease too many different species died at once.

## Paleoindians disappeared from North and South America



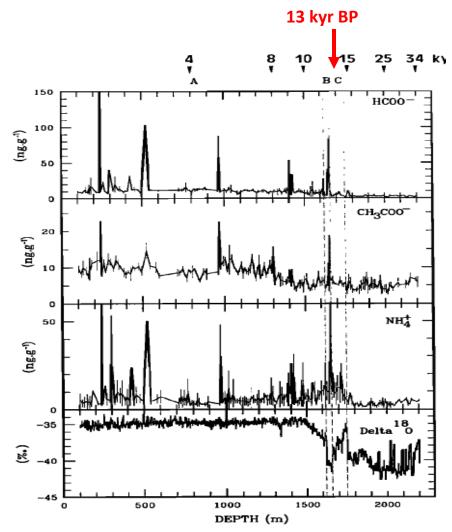

Range of Paleo-Indian dates in North and South America.



M.R. Waters and T.W. Stafford, Science 315, 1122-1126 (2007).

# **North America turned cold**




# Average temperatures suddenly drop in North America by 10°C

R.E. Taylor, C.V. Haynes, M. Stuiver, Antiquity **70**, 515 (1996) ; R.B. Alley, Quaternary Sci Rev. 19, 213 (2000). The Earth suddenly cooled 13 kyr ago, staying cold for ~1300 years.



Conventional Explanation: The Laurentide ice sheet collapsed sending fresh water into the North Sea upsetting thermohaline circulation.

# **Biomass Burning**

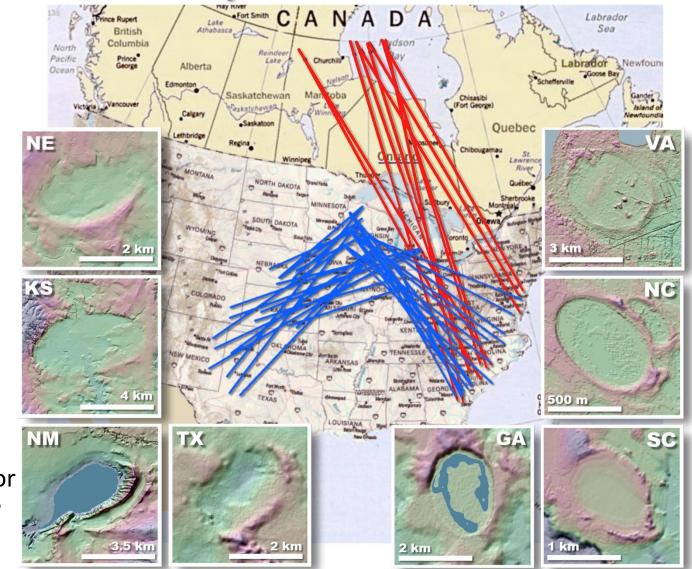



#### **Greenland ice core data**

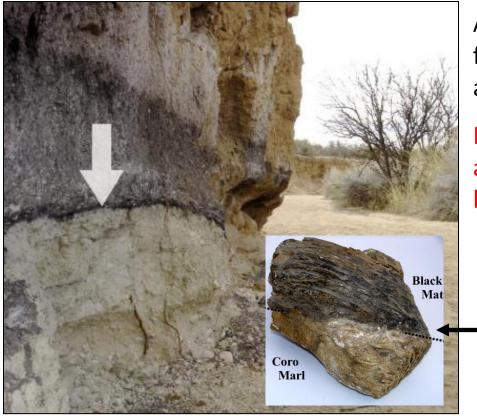
Formate (HCOO<sup>-</sup>), acetate (CH<sub>3</sub>COO<sup>-</sup>) and ammonium (NH<sub>4</sub><sup>+</sup>) concentration peaked in Greenland ice 12,900 yr ago. Ammonia highest in >100,000 years These markers are evidence of high temperature burning.



M. Legrand and M. De Angelis, J. Geophys. Res. **100**, 1445-1462 (1995).


# Orientation of Carolina Bays and possible related bay formations





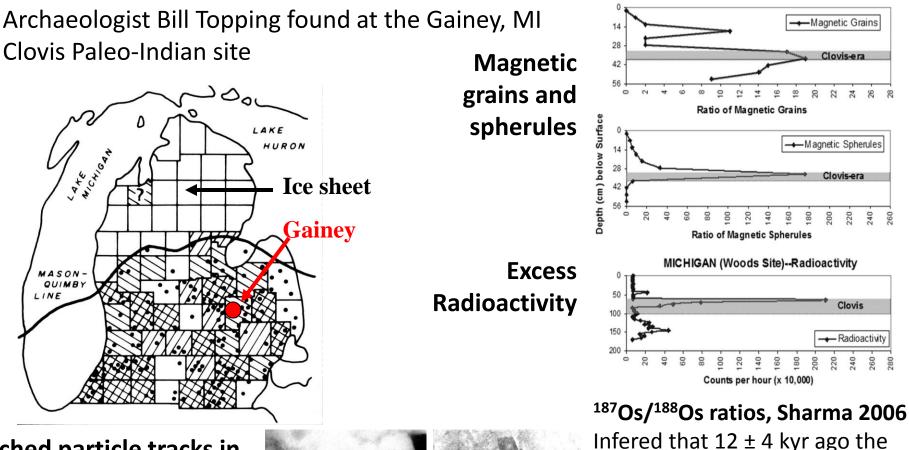

# DEM images of Carolina Bays.

≈500,000 bays NJ to FL with parallel major axes pointing to the Great Lakes region. Fewer western bays.



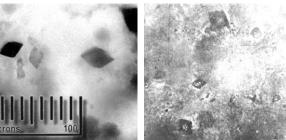
## A "black mat" forms 13,000 years ago




A black mat, beginning 13 kyr ago, is found at more than 90 Clovis-age sites across North America.

No evidence of megafauna or Clovis artifacts is found within or above the black mat.

The black mat at Murray Springs, AZ was found draped directly over mammoth fossils.


The sudden extinction of the Pleistocene megafauna .....would be dramatically revealed by explaining that all were gone an instant before the black mat was deposited. C. Vance Haynes University of Arizona

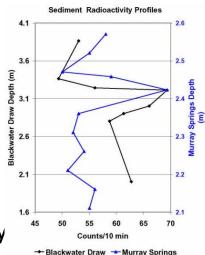
## First Impact evidence from Gainey, MI



Etched particle tracks in Clovis chert (left).

100 MeV/A Fe ion tracks in modern chert (right), MSU.

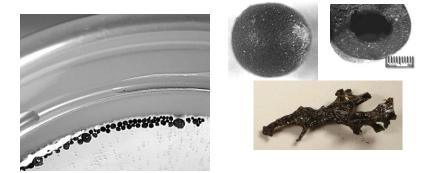



Infered that 12 ± 4 kyr ago the <sup>187</sup>Os/<sup>188</sup>Os ratios of the Pacific Ocean crusts were suppressed due to a meteorite impact. paper rejected by *Geology* because "no impact occurred at that time".

# We gathered sediment evidence from 10 Clovis-age Sites and 16 Carolina Bays






Geiger counter to measure radioactivity



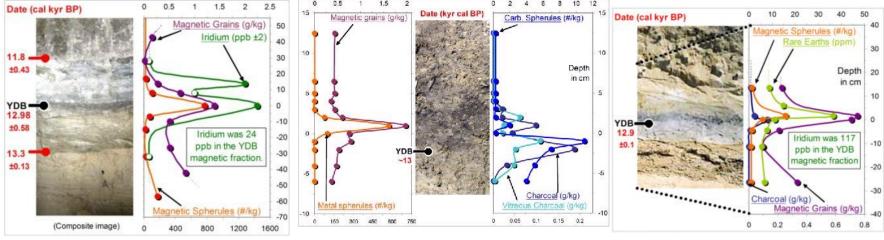
"High Tech experimental equipment"



Nd magnet to separate Magnetic grains and microspherules



Flotation with water in a glass dish to separate carbon spherules, glass-like carbon, charcoal ...


Samples collected by Allen West (US, Canada) and Han Kloosterman (Belgium)

### **Metallic Microspherules**



Metallic (Fe/Ti) microspherules were found, only in the 12,900 year old YD boundary layer (YDB), at all sites.

# Impact markers peak near the YD Layer at all Clovis-age sites

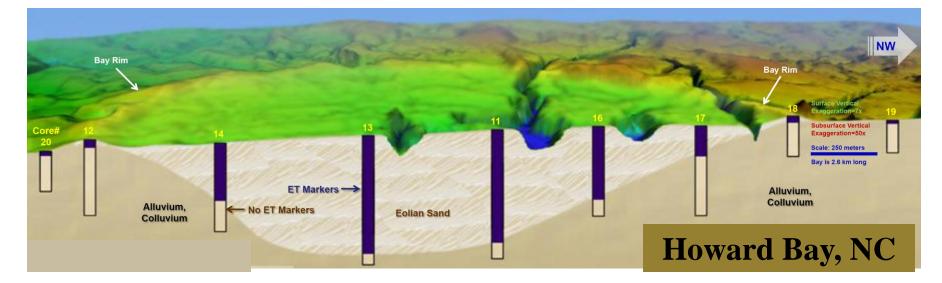


Blackwater Draw, NM

Chobot, Alberta Canada

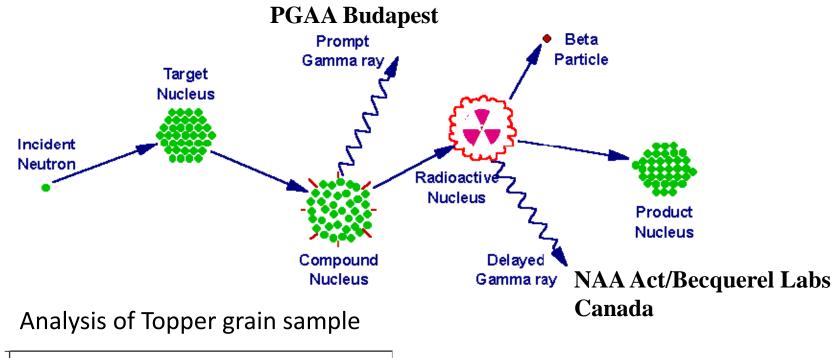
Lommel Belgium

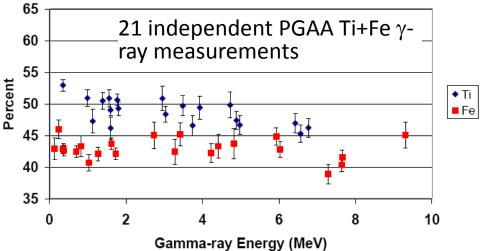



Wally's Beach, Alberta Canada

Impact markers including very high concentrations of Ir were inside a 12.9 kyr old horse skull from Wally's Beach, Alberta were found among the tracks of mammoths, camels, and Clovis points




## **Carolina Bay Impact Markers**


Magnetic microspherules, carbon spherules, and other impact markers are mixed throughout Carolina Bay sediments but not below.

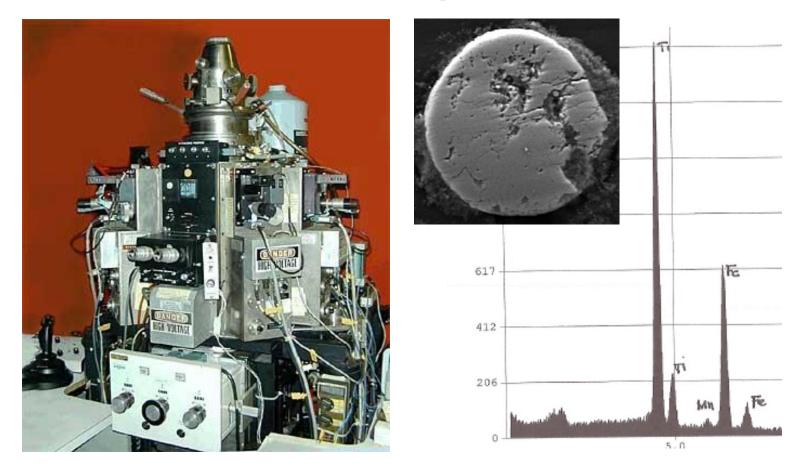


Drawing courtesy of George Howard, Raleigh NC.

## **PGAA/NAA analysis of magnetic grains**






Prompt Gamma-ray Activation Analysis (PGAA) is sensitive to <0.1 mg/cm<sup>3</sup> of any element from H to U. NAA is very sensitive to selected trace elements.

### **Bulk Analysis of Metallic Grains**

| PGAA/NAA Analysis of Metallic Grains |                  |     |                                |                  |     |                  |     |     |      |
|--------------------------------------|------------------|-----|--------------------------------|------------------|-----|------------------|-----|-----|------|
| Site                                 | H <sub>2</sub> O | MgO | Al <sub>2</sub> O <sub>3</sub> | SiO <sub>2</sub> | CaO | TiO <sub>2</sub> | MnO | FeO | lr   |
| Site                                 | Wt.%             |     |                                |                  |     | ppb              |     |     |      |
| Gainey, MI                           | 3.2              | 2.9 | 11                             | 60               | 2.2 | 1.6              | 0.4 | 14  | <2   |
| Murray Springs, AZ                   | 5.1              | 2.0 | 6.7                            | 41               | 3.8 | 16               | 2.0 | 21  | 2    |
| Blackwater Draw, NM                  | 1.5              | 2.1 | 6.5                            | 51               | 0.2 | 8.1              | 1.1 | 27  | 24   |
| Chobot, AB                           | 5.0              |     | 12                             | 62               | 1.3 | 0.9              | 0.5 | 14  |      |
| Wally's Beach, AB                    | 1.6              |     | 6.9                            | 34               | 3.5 | 8.3              | 0.3 | 41  | 51   |
| Topper, SC                           | 0.7              | 0.4 | 1.9                            | 5                |     | 49               | 0.2 | 43  | 2    |
| Lommel, Belgium                      | 0.8              | 1.3 | 1.4                            | 51               | 1.3 | 21               | 1.4 | 33  | 117  |
| Crustal                              |                  | 2.5 | 15                             | 67               | 3.6 | 0.6              | 0.1 | 5   | 0.02 |

PGAA/NAA elemental analysis of more than 45 elements was measured in over 200 samples. The high Ti concentrations are unusual for meteoritic material, although the high Ir concentrations are clearly extraterrestial.

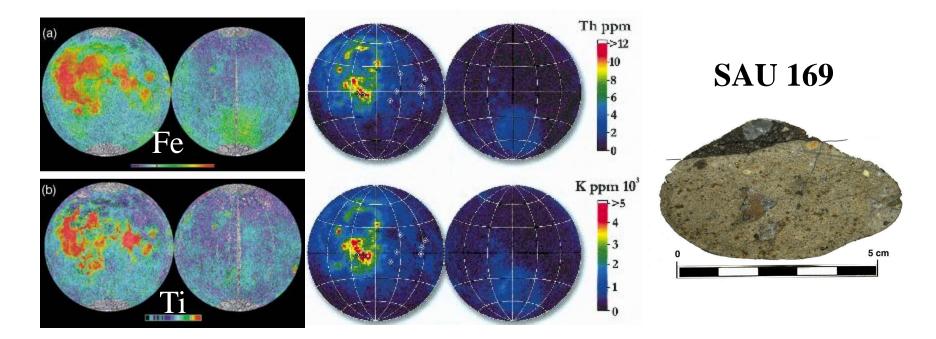
# SEM/XRF analysis of magnetic grains and microspherules



Scanning electron microscope x-ray fluorescence (SEM/XRF) analysis of microspherules performed at Cannon Microprobe (Seattle) and at USGS Menlo Park. Analysis of a sliced Ti-rich Gainey microspherule is shown.

## Analysis of Metallic Microspherules

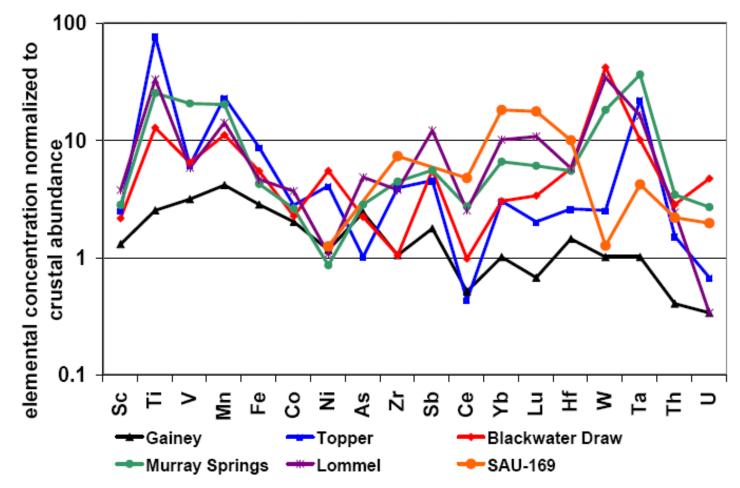
Microspherules and magnetic grains are rich in Ti.


The high Ti/Fe ratio is not found in terrestrial sediments or meteoritic material.

The only comparable Ti/Fe ratio was found in lunar Procellarum KREEP Terrane (Apollo 12).

| XRF Analysis of Microspherules (Wt.%) |           |                  |                  |     |      |       |
|---------------------------------------|-----------|------------------|------------------|-----|------|-------|
| Site-sample                           | $Al_20_3$ | SiO <sub>2</sub> | TiO <sub>2</sub> | FeO | MnO  | Ti/Fe |
| Blackwater-1                          | 3.7       | 5.8              | 13               | 74  | 1.7  |       |
| Blackwater-2                          | 2.3       | 3.1              | 53               | 37  | 3.5  |       |
| Gainey-1                              | 2.7       | 5.1              | 0                | 92  |      |       |
| Gainey-2                              | 24.8      | 55               | 2                | 18  |      |       |
| Gainey-3                              | 2.9       | 4.0              | 68               | 25  | 0.1  |       |
| Gainey-4                              | 6.4       | 40.1             | 25               | 7   |      |       |
| Gainey-5                              | 1.9       | 3.7              | 29               | 64  | 1.0  |       |
| Morley-1                              | 2.7       | 4.5              | 47               | 44  | 1.7  |       |
| Morley-2                              | 3.0       | 4.6              | 40               | 50  |      |       |
| Morley-3*                             | 1.7       | 1.9              | 0                | 84  |      |       |
| Morley-4                              | 3.4       | 11.5             | 0                | 84  |      |       |
| Lommel-1                              |           |                  | 74               | 16  |      |       |
| Lommel-2                              |           |                  | 54               | 11  |      |       |
| Lommel-3                              |           |                  | 74               | 16  |      |       |
| Spherule Ave.                         | 5.0       | 12.7             | 34               | 44  | 0.7  | 0.77  |
| Grain Ave.                            | 6.1       | 44               | 22               | 30  | 0.9  | 0.73  |
| Crustal                               | 15        | 67               | 0.6              | 5   | 0.1  | 0.12  |
| Ocean trench                          | 10        | 59               | 0.5              | 7.6 | 2.2  | 0.07  |
| LOIB                                  |           |                  |                  |     |      | 0.20  |
| KT layer                              | 15        | 70               | 0.3              | 4.5 | 0.01 | 0.07  |
| PT layer                              | 9         | 24               | 0.45             | 2.3 | 0.02 | 0.20  |
| CI Chondrite                          | 1.6       | 23               | 0.07             | 24  | 0.3  | 0.003 |
| KREEP                                 | 9         | 14               | 12               | 19  |      | 0.63  |

\* Also contains 12% Ni

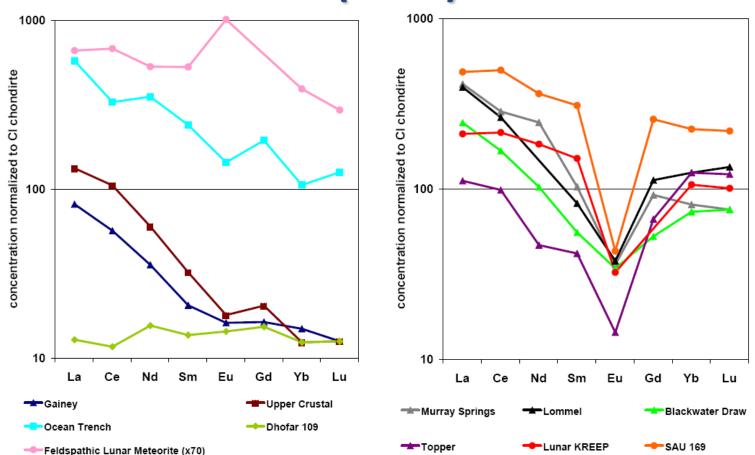

## Lunar Procellarum KREEP Terrane



Lunar Procellarum KREEP Terrane is a small area of the moon with high FeO (≤20%), TiO2 (≤15%), Th (>6 ppm) and K, rare earth, P, and other "incompatable" element (KREEP) concentrations.

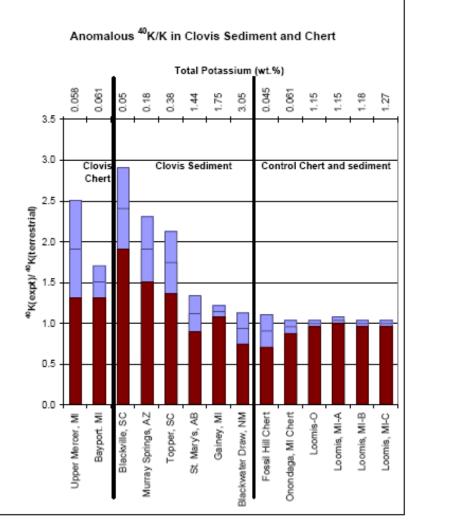
SAU 169 is the only lunar meteorite believed to come from this region. It left the moon <400 ka ago and fell to earth  $\approx$ 10,000 years ago, possibly at the time of the YD impact.

### **Chemistry of the Ejecta Layer**



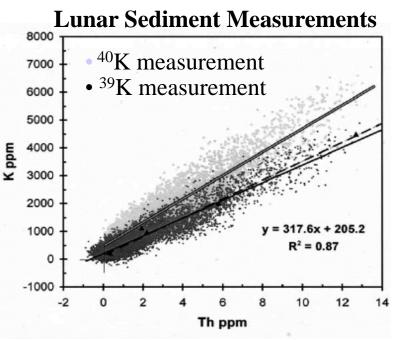

The Gainey ejecta (black) have terrestrial composition.

Other ejecta are similar to lunar KREEP meteorite SAU-169 (orange).


Conclusion: Gainey is near the impact site where low-velocity terrestrial debris fell. Other sites contain high-velocity, lunar-like impactor ejecta.

## Chemistry of the Rare Earth Elements (REES)

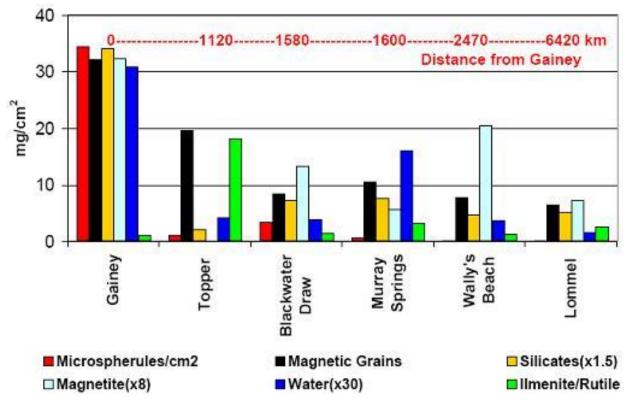



CI chondrite-normalized REEs from Gainey (black) are similar to crustal sources (brown).

Ejecta from other sites have a negative Eu anomaly similar to lunar KREEP (red) and lunar KREEP meteorite SAU-169 (orange).



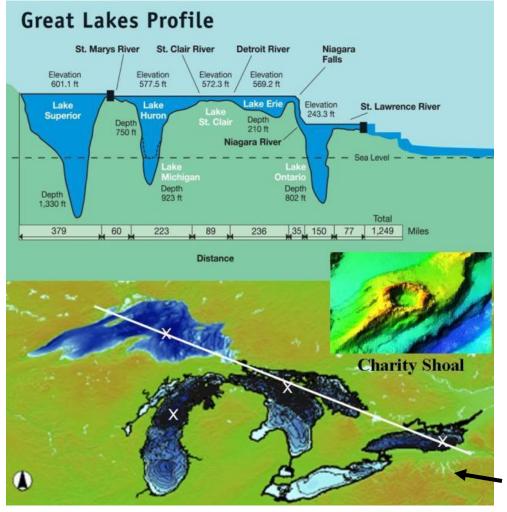
#### Anomalous <sup>40</sup>K abundance


| Source                  | <sup>40</sup> K/K |
|-------------------------|-------------------|
| Terrestrial (IUPAC)     | 0.0117±0.0001%    |
| Microspherules (Oceanie | c) 0.016–0.020%   |
| Fe Meteorites (Voshage) | ) 1.6 - 18.9%     |
| Cosmic rays (Connell)   | 31%               |



 $^{40}$ K abundance measured by  $\gamma$ -ray counting at the LBNL Low Background Facility (Al Smith). Total K abundance measured by PGAA/NAA.

Similar enrichments are seen in oceanic microspherules and possibly in lunar sediment. <sup>40</sup>K is highly enriched in Fe meteorites and cosmic rays.


# **Distribution of impact evidence**



- Metallic grains, microspherules, and terrestrial minerals all peak near Gainey, Mi
- Heavy elements including Titanium dominate the ejecta far from Gainey

Conclusion: An impact occurred near the Great Lakes depositing terrestrial debris near the impact site and impactor debris farther away

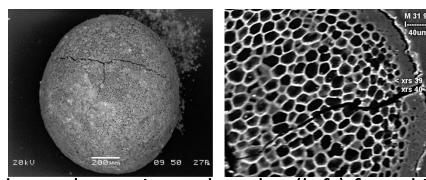
# Are the Great Lakes impact craters?



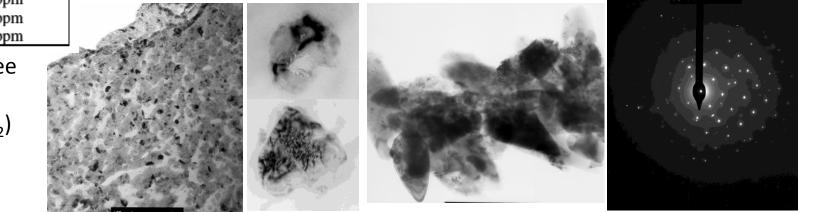
The basins of four Great Lakes are below sea level.

Lake Superior is the 2<sup>nd</sup> deepest point on the continental Earth.

Charity Shoal is a 1 km crater or the right age in Lake Ontario


Three of the Great Lakes basins line up like a chain of craters.

The Finger Lakes radiate out from the Lake Ontario basin.


## **Carbon Spherules**

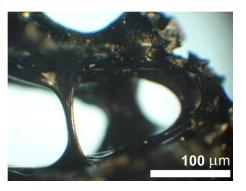
| Element          | Wt.%/ppm |
|------------------|----------|
| H <sub>2</sub>   | 5.3%     |
| в                | 61 ppm   |
| С                | 82%      |
| Ň                | 6.8%     |
| $Al_2O_3$        | 2.0%     |
| SiO <sub>2</sub> | 2.2%     |
| S                | 0.39%    |
| Cl               | 0.073%   |
| $K_2O$           | 0.12%    |
| CaO              | 0.5%     |
| TiO <sub>2</sub> | 0.09%    |
| FeO              | 0.2%     |
| Cu               | 0.06%    |
| Cd               | 0.8 ppm  |
| Sm               | 0.8 ppm  |
| Gd               | 0.9 ppm  |

Similar to tree resin  $(C_5H_8)_n$ (88%C, 6%H<sub>2</sub>)




Vesicular carbon microspherules (left) found in the YD boundary layer




Carbon spherules contain millions of nanodiamonds (<1  $\mu$ m) often in clusters. XRD shows typical diamond structure. Cubic, hexagonal and n-diamond forms all are found.

**Conclusion:** nanodiamonds are only known to be associated with impact events.

## **Glass-like carbon**

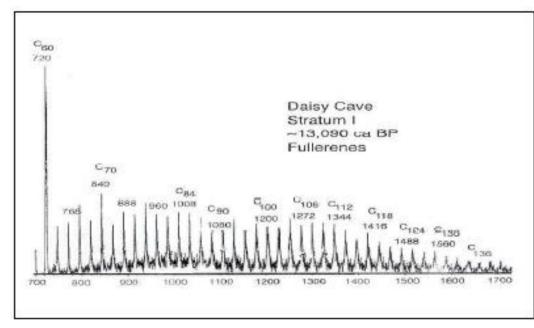




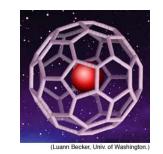


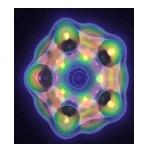
Gainey, MIMurray Springs, AZTopper, SCGlass-like carbon (GLC) also contains nanodiamonds.

Sample from Carolina Bay grades from GLC at the top to wood (Yellow Pine) at the bottom suggesting that GLC was produced by shockwave heating of trees.



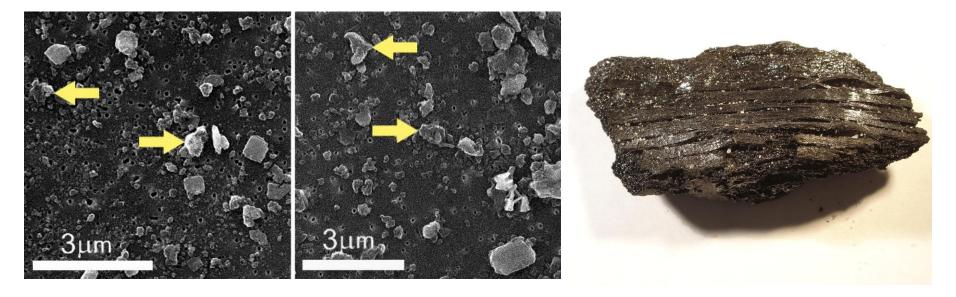

| <b>T</b> 1       | 1.01.1    |
|------------------|-----------|
| Element          | wt, %/ppm |
| $H_2$            | 3.0%      |
| В                | 10.2 ppm  |
| С                | 90%       |
| N                | 0.66%     |
| $Al_2O_3$        | 0.97%     |
| SiO <sub>2</sub> | 4.8%      |
| Cl               | 181 ppm   |
| $K_2O$           | 120 ppm   |
| CaO              | 0.49%     |
| TiO <sub>2</sub> | 0.067%    |
| Cd               | 0.22 ppm  |
| Sm               | 0.19 ppm  |
| Gd               | 0.22 ppm  |


Similar to tree resin  $(C_5H_8)_n$ 


## **Fullerenes**

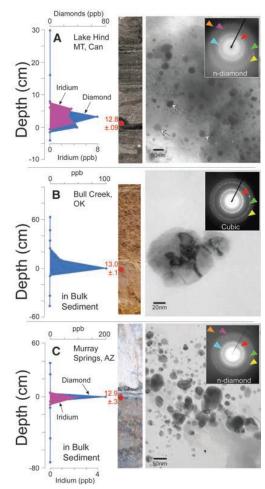
Fullerenes, found in glass-like carbon, were also observed in the KT and PT boundary layers. They contain trapped helium with <sup>3</sup>He/<sup>4</sup>He ratios greater than 80× terrestrial values.



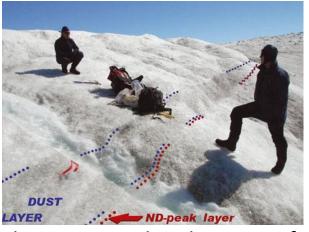

Laser desorption mass spectrum of fullerenes from Daisy Cave, CA. (Luann Becker, UCSB)



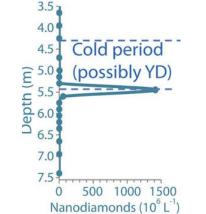


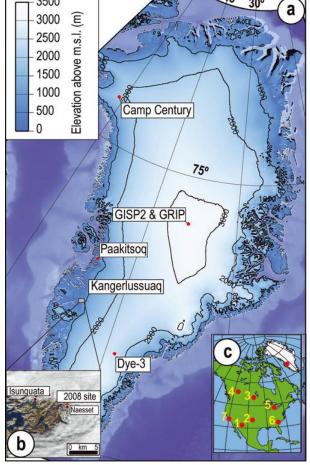

"Buckyball" structure (left) creates a cage suitable for trapping noble gases. SEM image (right) reveals the repeating pentagonal structure.

## **Soot and Charcoal**




SEM photomicrographs of micron-sized soot (yellow arrows) from a Carolina Bay (left), measured at 1969±167 ppm, and from Murray Springs, AZ (center), measured at 21±7 ppm (Wendy Wolbach, DePaul University). The soot levels and morphology from both sites are similar to those from the K/T. Charcoal (right) was abundant in the YDB. Both soot and charcoal are evidence of extensive fires following the impact.


# **New Nanodiamond Evidence**



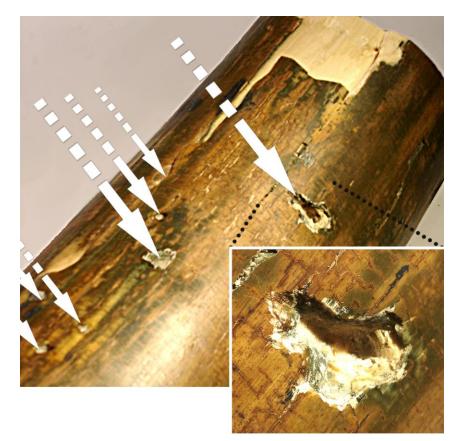

TEM photomicrographs and electron diffraction patterns from several sites Nanodiamonds have only been found in meteorites. We find them in the impact layer at all sites including Greenland Ice.



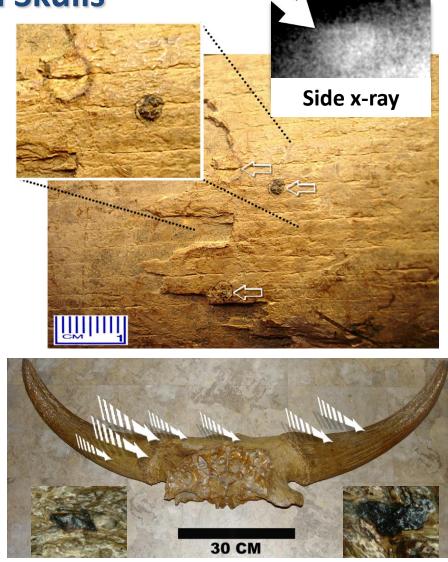
Dark ice section dated to time of impact is rich in nanodiamonds.






Nanodiamonds found at Kangerlussuaq

# Conclusions


A comet or meteor of unusual Ti-rich, lunar KREEP-like origin struck near the Great Lakes 12,900 years ago causing

- 1. The extinction of megafauna across North America and beyond
- 2. Disappearance of the Clovis people
- 3. Destruction of the Laurentide ice sheet leading to a massive rush of fresh water into the North Sea, interrupting thermohaline circulation and leading to >1000 years of global cooling.
- 4. Intense high temperature burning of grasslands and forests
- 5. Deposition of microspherules enriched in Ir and heavy elements
- 6. Formation of Fullerenes and nanodiamonds
- 7. Deposition of a black mat formed by algal growth and charcoal deposition
- 8. Creation of the Carolina Bays from the blast shockwave

#### Search for micrometeorites in Mammoth Tusks and Bison Skulls



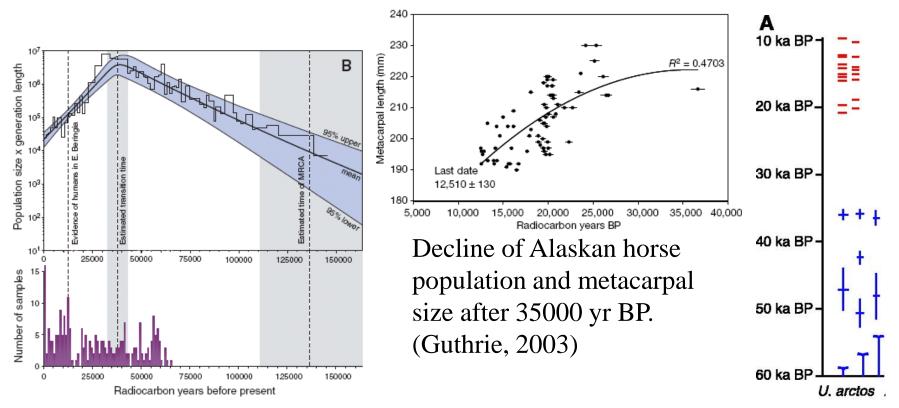
Magnetic particles were found on only one side of mammoth tusks, bison skulls, and musk ox skulls.



### Surprising age and composition of the Tusk and Bison Particles

| Sample      | <sup>14</sup> C Age |
|-------------|---------------------|
| Tusk 05-01  | 33,000              |
| Tusk 05-01  | 36,600              |
| Tusk 05-01  | 35,300              |
| Tusk 05-02A | 21,000              |
| Tusk 05-02B | 31,800              |
| Tusk 05-02C | 31,200              |
| Tusk 05-02D | 32,000              |
| Tusk 07-1   | 34,500              |
| Bison       | 26,300              |

# Radiocarbon age is 33,500±800 yr!


PGAA analysis of the bison particle found 0.36 mg Fe. Consistent with an ~1 mm diameter object.

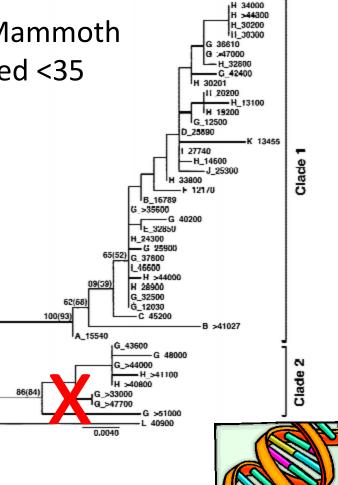
|                     | Ti/Fe    | Mn/Fe    | Ni/Fe    |
|---------------------|----------|----------|----------|
| Tusk 05-1           |          |          |          |
| Sample-1            | 0.003636 | 0.018182 | 0.006818 |
| Sample-2            | 0.003676 | 0.019485 | 0.005331 |
| Sample-3            | 0.004342 | 0.025439 | 0.005263 |
| Bison Bi-B          |          |          |          |
| Sample-1            |          | 0.0019   | 0.0075   |
| Sample-2            |          | 0.0015   | 0.0079   |
| Urelite (Novo-Urei) | <0.006   | 0.02     | 0.0065   |
| Urelite(Goalpara)   | 0.0045   | 0.014    | 0.0038   |
| CI Chondrite        | 0.0029   | 0.012    | 0.046    |
| Terrestial (crust)  | 0.13     | 0.02     | 0.0009   |
| Black sand          | 0.0064   |          | < 0.0002 |
| LOIB Basalt         | 0.3      | 0.017    | 0.0016   |
| Arc Andesites       | 0.13     | 0.02     | 0.0022   |

ICP/MS analysis whows that the Tusk and Bison particles are enriched in Ni and depleted in Ti. This composition is clearly meteoritic.

### **Events in Beringia 34,000 years ago**

#### Megafauna populations declined markedly



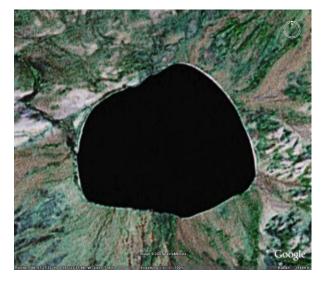

Decline of Steppe Bison population <36 ka ago. Shapiro *et al*, Science 306, 1561 (2004).

Decline of the brown bear population <35 ka ago I. Barnes et al, Science 295, 2269 (2002).

# Genetic changes <35 kyr ago

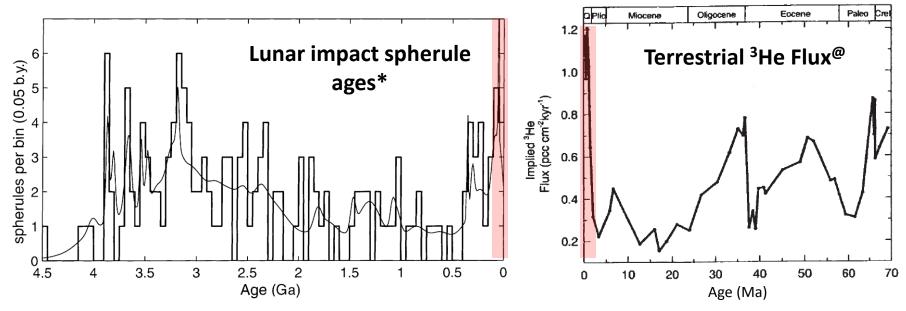
One of the two major Beringian Mammoth mitochondrial lineages disappeared <35 kyr ago\*.






\* I. Barnes et al, Current Biology 17, pp 1-4 (2007)

# What happened <35 kyr ago?


Micrometeorites can't penetrate Earth's atmosphere at high velocity. Possibly a large meteor impacted Beringia shedding micrometeorite shrapnel as it fell.

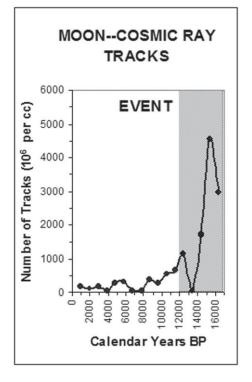
Sithylemenkat Lake (Alaska) may be the impact crater. It is 12 km in diameter and <100,000 years old. Nearby streams contain nickel concentrations of up to 5000 ppm.



Why did this happen so recently. This kind of event is expected to happen once every 10 million years.

# Recently the rate of meteorite impacts has increased dramatically

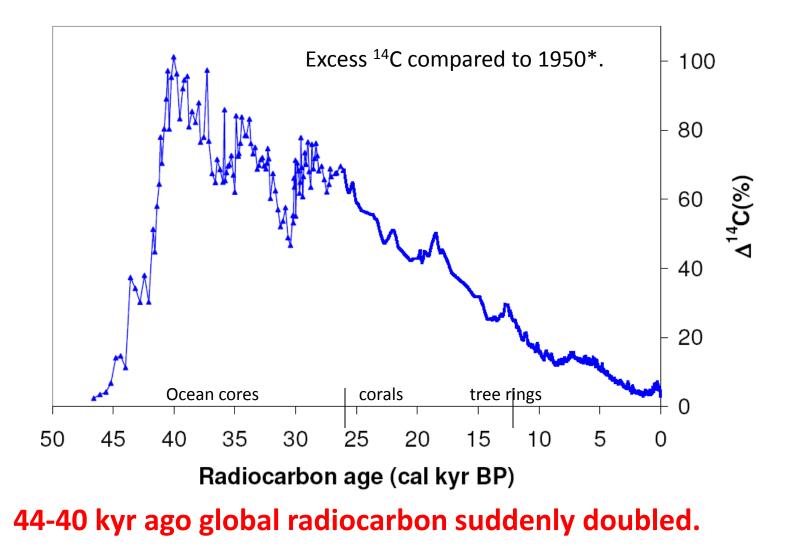



The recent impact rate may have increased by up to an order of magnitude. Eugene Shoemaker<sup>@</sup>

\* Culler et al, Science **287**, 1785 (2000).

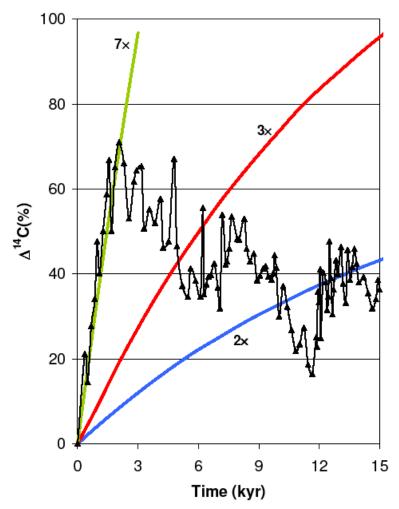
<sup>@</sup> Farley (1997) in Shoemaker, J. Royal Astron. Soc.

of Canada, 92, 297 (1998)


# Cosmic ray rates increased on the Moon



Herb Zook (NASA, 1980) suggested that, based on lunar rock cosmic ray track and radioisotope age data, "*a past increase in solar cosmic ray activity*" occurred "*prior to about 20 ka ago*". <sup>14</sup>C was 3× the expected value in lunar sediment, confirmed by Tim Jull (1998) who reported that "over the last 20 ka there cannot have been more than one event >5×10<sup>13</sup> protons/cm<sup>2</sup>."

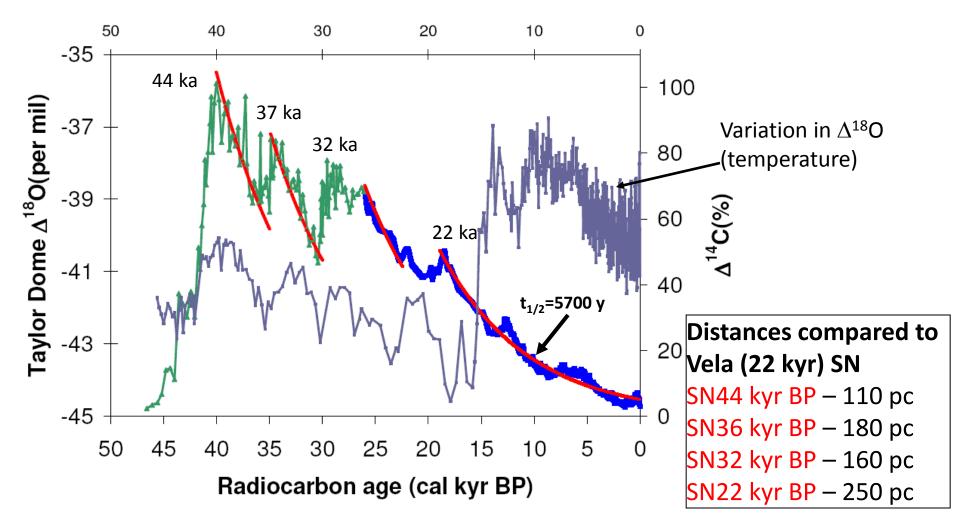

| <u>Lunar</u><br><u>Rock</u> | <u>1. Crater</u><br><u>Age</u> | <u>2. Track</u><br><u>Age</u> | <u>3. <sup>26</sup>Alum.</u><br><u>Age</u> | <u>Ratio of</u><br><u>#2/#1</u> | <u>More Past</u><br><u>Radiation</u> |
|-----------------------------|--------------------------------|-------------------------------|--------------------------------------------|---------------------------------|--------------------------------------|
| 12054                       | 26,500                         | 175,000                       | ~150,000                                   | 6.6                             | Yes                                  |
| 15205                       | 15,300                         | 80,000                        | ~100,000                                   | 5.2                             | Yes                                  |
| 60015                       | 20,000                         | 150,000                       |                                            | 7.5                             | Yes                                  |

# Radiocarbon cosmic ray evidence



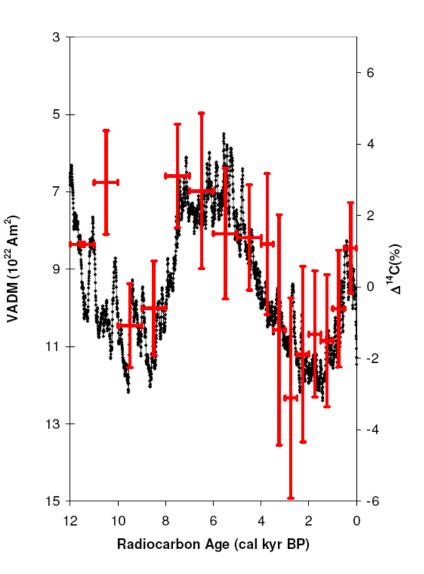
\* Reimer et al, INTCAL04, Radiocarbon 46, 1029–1058 (2004)

# Could the disappearance of Earth's magnetic field explain the <sup>14</sup>C increase?




Reimer et al proposed this increase was due to a  $2-3 \times$  increase in the rate of <sup>14</sup>C production predicted if Earth's magnetic field disappeared.

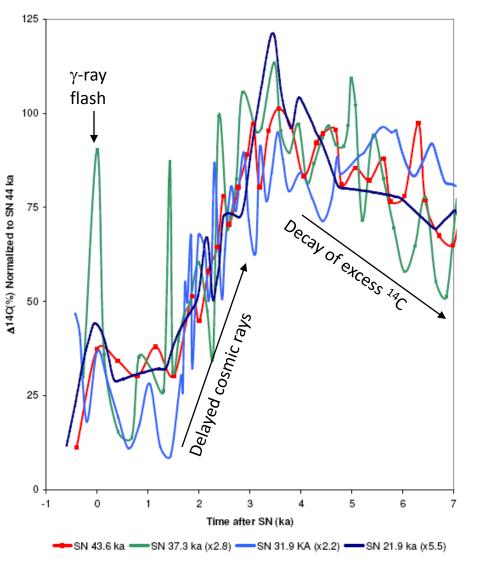
- Requires 23 kyr to double <sup>14</sup>C pool
- 7× increase is needed to explain the data


#### The <sup>14</sup>C increase cannot be explained by magnetic field changes

# Supernova origin of <sup>14</sup>C increase



Global radiocarbon produced by each supernova decays (red curve) with the <sup>14</sup>C half-life.

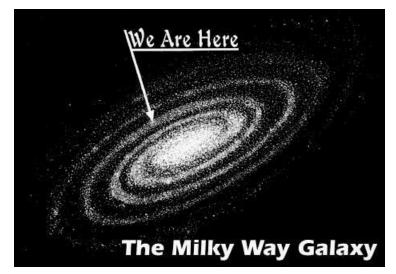

# **Earth's Magnetic Field Affects**



Difference between experimental  $\Delta^{14}$ C and expected  $\Delta^{14}$ C from the decay curve.

Experimental fluctuations in  $\Delta^{14}$ C, due to variations in the Earth's magnetic field (black) are comparred to variations in Earth's magnetic field (red).

# **The Supernova Signature**




Renormalizing <sup>14</sup>C to a common scale for each supernova we find the expected signature

- Sudden increase in <sup>14</sup>C due to γ-rays and neutrinos
- Steady increase in <sup>14</sup>C due to cosmic rays for centuries.
- Decay of excess <sup>14</sup>C with 5700 y half-life

Measurement:  $E_{CR} = 3 \times 10^{50} \text{ ergs}$ 

# **Earth's Recent Neighborhood**



We live in the outskirts of the Milky Way where giant stars are born only to die soon in fiery supernovae

It is estimated that about 20 supernovae exploded near Earth in the past 10 Myr.

This may have stirred up the solar system causing an increas in impacts.



We live in the middle of a local bubble formed by the debris of nearby supernovae.

# **Radiocarbon: The Last Frontier?**

# Radiocarbon age of various samples from the 12,900 year old YDB layer.

| JCI-AMS# | YDB Site          | Sample Depth (cm) | Date (yr)     | ] |
|----------|-------------------|-------------------|---------------|---|
|          | Carbon spherules  |                   |               |   |
| 29311    | Blackville Bay    | 30                | -755 ± 15     |   |
| 29302    | Sewell Bay        | 110               | -400 ± 15     |   |
| 29305    | Bladen Bay        | 80                | -180 ± 20     |   |
| 29316    | Gainey            | 20                | -135 ± 15     |   |
| 29297    | Myrtle Bay        | 97                | 275 ± 20      |   |
|          | Woody debris      |                   |               |   |
| 29327    | Myrtle Bay        | 163               | -685 ± 15     |   |
| 29328    | Myrtle Bay        | 173               | 305 ± 20      |   |
|          | Glass-like carbon |                   |               |   |
| 29318    | Myrtle Bay 2      | 70                | 685 ± 15      |   |
| 29309    | Bladen Bay        | 173               | 2630 ± 20     |   |
| 29301    | Sewell Bay        | 20                | 4230 ± 15     |   |
| 29308    | Bladen Bay        | 122               | 5820 ± 15     |   |
| 29299    | Myrtle Bay        | 97                | 6395 ± 25     |   |
| 29304    | Bladen Bay        | 15                | 8455 ± 20     | F |
|          | Charcoal          |                   |               | ` |
| 29313    | Blackville Bay    | 145               | -510 ± 15     | 1 |
| 29312    | Blackville Bay    | 145               | 35 ± 15       |   |
| 29300    | Myrtle Bay        | 127               | 1265 ± 20     | • |
| 29314    | Chobot Clovis     | 12                | $1520 \pm 20$ | f |
| 29303    | Sewell Bay        | 130               | 2990 ± 15     | • |
| 29315    | Chobot Clovis     | 15                | 3645 ± 20     |   |
| 29298    | Myrtle Bay        | 97                | 4760 ± 20     |   |
| 29306    | Bladen Bay        | 106               | 6540 ± 15     | S |
| 29307    | Bladen Bay        | 122               | 6565 ± 15     |   |

#### Summary of all radiocarbon ages of Clovis Paleo-Indian sites

| Clovis site        | Date(yr)       | Date (yr) |  |
|--------------------|----------------|-----------|--|
| Sandy Ridge, ON    | $735 \pm 65$   | 735±65    |  |
| Leavitt, MI-1      | $1100 \pm 600$ | 1100±600  |  |
| Leavitt, MI-2      | 7886 ± 116     | 7886±116  |  |
| Alton, IN          | 1860 ±         | 1860      |  |
| Thedford, ON       | $2130 \pm 230$ | 2130±230  |  |
| Gainey, MI         | 2830 ± 175     | 2830±175  |  |
| Zander, ON         | $3380 \pm 420$ | 3380±420  |  |
| Potts, NY          | 3810 ±         | 3810      |  |
| CB-North IL-1      | 3190 ± 330     | 3190±330  |  |
| CB-North IL-2      | 4000 ± 90      | 4000±90   |  |
| CB-North, IL-3     | 4180 ± 40      | 4180±40   |  |
| Halstead, ON       | 6030 ± 60      | 6030±60   |  |
| Sheridan Cave, OH  |                | ≥12640    |  |
| Paleo Crossing, OH |                | 12900±200 |  |

# Radiocarbon ages of carbon from the YDB impact are too young

• <sup>14</sup>C produced by D+D fusion reactions in flight or on impact

• <sup>14</sup>C produced in recent (<40 kyr)

#### supernova

# Thank you for your attention

#### **Further reading:**

#### 1. Younger Dryas Impact Event (12,900 yr BP)

- a. Cycle of Cosmic Catastrophes, R.B. Firestone, A. West, Inner Traditions (2007)
- b. R.B. Firestone et al, Evidence for an extraterrestrial impact 12,900 years ago that contributed to the megafaunal extinctions and the Younger Dryas cooling, PNAS 104, 16016 (2007). (101 citations since publication)
- c. R.B. Firestone, *The Case for the Younger Dryas Extraterrestrial Impact Event: Mammoth, Megafauna and Clovis Extinction,* Journal of Cosmology 2, 286-288 (2009).
- d. R.B. Firestone, et al, *Analysis of the Younger Dryas Impact Layer*, J. Siberian Federal University. Engineering and Technologies 1, 30-62 (2010).

#### 2. Meteorite Impacts in Mammoth Tusks (35,000 yr BP)

- R.B. Firestone, Evidence of four prehistoric supernovae <250 pc from Earth during the past 50,000 years, American Geophysical Union Fall Meeting, 14-18 December 2009, San Francisco, CA, paper PP31D-1386.</li>
- b. Micrometeorite Impacts in Beringian Mammoth Tusks and a Bison Skull, J.T. Hagstrum, R.B. Firestone2, A. West, Z. Stefanka, Z. Revay, J. Siberian Federal University. Engineering and Tecjnologies 1, 123-132 (2010).

#### 3. Discovery of Near-Earth Prehistoric Supernovae 44-, 37-, 32-, and 22-kyr ago

R.B. Firestone, Evidence of Four Prehistoric Supernovae ≤250 pc from Earth during the Past 50,000 Years, American Geophysical Union Fall Meeting, 14-18 December 2009, San Francisco, CA, paper PP31D-1386. - LBNL-79199